What is Network Slicing?

network slicing 5g

Network slicing allows a network operator to provide dedicated virtual networks with functionality specific to the service or customer over a common network infrastructure. Thus it will be able to support the numerous and varied services envisaged in 5G.

What is Network Slicing?

Network slicing is a form of virtual network architecture using the same principles behind software defined networking (SDN) and network functions virtualisation (NFV) in fixed networks. SDN and NFV are now being commercially deployed to deliver greater network flexibility by allowing traditional network architectures to be partitioned into virtual elements that can be linked (also through software).

Network slicing allows multiple virtual networks to be created on top of a common shared physical infrastructure.

The virtual networks are then customised to meet the specific needs of applications, services, devices, customers or operators.

How Does It Relate To 5G?

In the case of 5G, a single physical network will be sliced into multiple virtual networks that can support different radio access networks (RANS), or different service types running across a single RAN. It is envisaged that network slicing will primarily be used to partition the core network, but it may also be implemented in the RAN.

What Will It Do?

Network slicing is expected to play a critical role in 5G networks because of the multitude of use cases and new services 5G will support. These new use cases and services will place different requirements on the network in terms of functionality, and will their performance requirements will vary enormously.

For example, an autonomous car will rely on V2X (vehicle-to-anything) communication which requires low latency but not necessarily a high throughput. A streaming service watched while the car is in motion will require a high throughput and is susceptible to latency. Both would be able to be delivered over the same common physical network on virtual network slices, to optimise use of the physical network.

How Does It Work?

Each virtual network (network slice) comprises an independent set of logical network functions that support the requirements of the particular use case, with the term ‘logical’ referring to software.

Each will be optimised to provide the resources and network topology for the specific service and traffic that will use the slice. Functions such as speed, capacity, connectivity and coverage will be allocated to meet the particular demands of each use case, but functional components may also be shared across different network slices.

Each will be completely isolated so that no slice can interfere with the traffic in another slice. This lowers the risk of introducing and running new services, and also supports migration because new technologies or architectures can be launched on isolated slices. It also has a security impact, because if a cyber attack breaches one slice the attack is contained and not able to spread beyond that slice.

Each will be configured with its own network architecture, engineering mechanism and network provisioning. It will typically contain management capabilities, which may be controlled by the network operator or the customer, depending on the use case. It will be independently managed and orchestrated.

Who’s Doing It?

Network slicing is expected to be a key component of future 5G networks and all major mobile equipment manufacturers are working on the technology. They’ve teamed up with major carriers to conduct research and demos, but UK participants seems to be thin on the ground even though the Flat Distributed Cloud architecture proposed by the 5GIC in early 2016 incorporates the concept of network slicing.

Perhaps the most progress has been made by Ericsson, which has been working on network slicing with Japan’s NTT DOCOMO since September 2014. In June 2016 the two announced a successful proof of concept of dynamic network slicing technology for 5G core networks. They created a slice management function and network slices based on requirements such as latency, security or capacity. Docomo designed the network slice creation and selection functions, while Ericsson developed the network slice lifecycle and service management technologies.

In July 2015 Ericsson and South Korea’s SK Telecom agreed to develop and deploy network slicing technology optimised for 5G services, continuing their existing partnership. In October that year the two companies demonstrated the creation of virtual network slices optimised for services including super multi-view and augmented reality/virtual reality, massive Internet of Things offerings and enterprise solutions.

In November 2016, Huawei and Deutsche Telekom demonstrated what they claimed was the world’s first 5G end-to-end autonomous network slicing. The demo showed how different network slices can be created automatically and in an optimised way on a shared RAN, core and transport network.

Where’s Are We Now?

Network slicing for 5G is still very much in the research stage and both the 3GPP and NGMN Alliance have been developing the definition and use cases. The proposed requirements for 5G network slicing are laid out in 3GPP’s Technical Report 22.891 (“Study on New Services and Markets Technology Enablers”), part of its Release 14 that was begun in September 2014 and is expected to be completed in 2017. The latest iteration was released in September 2016,

In November 2016, the 5G Americas industry association released a white paper (“Network Slicing for 5G Networks and Services”) that explores an end-to-end 5G systems framework for the creation of customised network slices. It also considers the application of network slicing to air-interface technologies and the long-term technology roadmap and solutions for network slicing in 5G. The white paper working group was led by representatives from Ericsson and Intel.

There’s no indication yet of any likely timeframe of when network slicing might be commercially available.


Latest News

Get all the latest 5G News

Stay up-to-date with 5G and sign up to our newsletter

©2017 Copyright 5G.co.uk. All rights reserved.